Thursday, October 21, 2010

Shinkansen : Train And Mass Transportation


Shinkansen (新幹線, juga sering dipanggil kereta peluru) adalah jalur kereta api cepat Jepang yang dioperasikan oleh empat perusahaan dalam grup Japan Railways. Shinkansen merupakan transportasi kereta api yang pertama kali beroperasi di Jepang
Shinkansen merupakan sarana utama untuk angkutan antar kota di Jepang, selain pesawat terbang. Kecepatan tertingginya bisa mencapai 300 km/jam. Kecepatan tinggi inilah yang menyebabkan masyarakat Jepang umumnya lebih memilih Shinkansen sebagai sarana transportasi sehari-hari.
Nama Shinkansen sering digunakan oleh orang-orang di luar Jepang untuk merujuk kepada kereta apinya, namun kata ini dalam bahasa Jepang sebenarnya merujuk kepada nama jalur kereta api tersebut. Jalur keret apai hanya khusus dipergunakan untuk operasional Shinkansen dan dilarang digunakan untuk kereta api jenis lain. Jalur kereta ini khusus dibuat dan direncanakan untuk dilalui oleh kereta berkecepatan tinggi dan relnya memang dibuat khusus. Shinkansen dibuka pada 1 Oktober 1964 untuk menyambut Olimpiade Tokyo. Jalur ini langsung sukses, melayani 100 juta penumpang kurang dari 3 tahun sejak dibuka pada tanggal 13 Juli 1967, dan melayani satu milyar penumpang pada 1976.
Pada mulanya Shinkanshen dari Tokyo ke Shin-Osaka (515,4km) memakan waktu kira-kira 4 jam. Pada 1992, Shinkanshen model baru 'Nazomi' yang dapat menghasilkan kecepatan 270 km/j telah menghasilkan perjalanan yang singkat. Rancangan penggunaan landasan kereta api linear motor car pada abad ke-21 yang akan datang ini diharapkan akan menambah kecepatan Shinkanshen




Untuk menghadapi gempa bumi kereta ini dilengkapi dengan sistem pendeteksian yang akan memberhentikan kereta bila gempa bumi terdeteksi. Pada gempa bumi Chuetsu di Oktober 2004 sebuah Shinkansen yang dekat dengan pusat gempa lepas dari relnya, namun tidak ada penumpang yang terluka. Kereta generasi berikutnya, FASTECH 360 akan memiliki sayap rem penahan angin (yang mirip dengan kegunaan telinga) untuk membantu proses pemberhentian bila gempa bumi terdeteksi. Pemerintah Jepang sangat menaruh perhatian kepada sistem transportasi jenis ini. Lingkungan sekitar jalur kereta api Shinkansen bebas dari perumahan penduduk dan aktivitas lainnya
Pada 2003, JR Central melaporkan jadwal waktu rata-rata Shinkansen tepat dalam 0,1 menit atau 6 detik dari waktu yang telah dijadwalkan. Ini termasuk seluruh kesalahan alami dan manusia dan dihitung dari seluruh 160.000 perjalanan yang dijalani oleh Shinkansen. Rekor sebelumnya dari 1997 dan tercatat 0,3 menit atau 18 detik.









Pemerintah Indonesia sebaiknya lebih serius untuk memperhatikan masalah transportasi. Kenyamanan dan ketepatan waktu dari system transportasi akan memudahkan pergerakan barang dan jasa yang sekaligus akan meningkatkan sektor perekonomian. Transportasi bukan hanya permasalahan sarana dan prasarana, tetapi juga menyangkut masalah manajemen yang mengelola sistem transportasi tersebut. Jika sarana dan prasarana transportasi telah dibangun dengan baik dan dikelola dengan manajemen yang baik, tentu saja masyarakat luas akan menikmati kenyamanan dan ketepatan waktu untuk melakukan perjalanan. Transportasi merupakan kebutuhan dasar masyarakat yang sebaiknya dilayani dengan baik oleh pemerintah. Sudah seharusnya pemerintah lebih memperhatikan sarana dan prasarana di bidang transportasi sehingga permasalahan transportasi dapat dikurangi

Sumber : wikipedia.org

Thursday, October 14, 2010

Garuda Wisnu Kencana Cultural Park : Between Culture, Tradition, Religion, And Technology


Bali merupakan salah satu destinasi pariwisata yang ada di Indonesia. Alam, budaya, tradisi, dan adat istiadat masyarakat Bali telah menarik begitu banyak wisatawan baik dari dalam negeri maupun luar negeri. Banyak tempat-tempat menarik yang dapat dikunjungi. Tanah Lot, Pantai Kuta, Kawasan Wisata Sanur, sampai pedesaan asli Bali merupakan magnet yang dapat mengundang kekaguman dari wisatawan. Kini, Bali siap untuk menambah kawasan wisata yang dapat dijadikan pilihan untuk dikunjungi. Garuda Wisnu Kencana Cultural Park merupakan kawasan wisata yang siap dibangun untuk menambah objek wisata yang ada di Bali. Garuda Wisnu Kencana Cultural Park merupakan sebuah kawasan wisata dengan konsep seni dan budaya. Kawasan wisata ini rencananya akan dibangun di Bukit Ungasan, Jimbaran, Bali yang juga merupakan kawasan Universitas Udayana. Sentral dari konsep kawasan wisata ini, yaitu patung Dewa Wisnu yang dalam mitologi Agama Hindu merupakan dewa pemelihara alam semesta yang menunggangi kendaraan atau wahana Beliau yang berupa Burung Garuda. Patung ini merupakan salah satu karya dari pematung terkenal Bali, yaitu I Nyoman Nuarta. Patung ini diproyeksikan untuk mengikat tata ruang dengan jarak pandang sampai dengan 20 km sehingga dapat terlihat dari Kuta, Sanur, Nusa Dua hingga Tanah Lot. Patung Garuda Wisnu Kencana ini merupakan simbol dari misi penyelamatan lingkungan dan dunia. Patung ini terbuat dari campuran tembaga dan baja seberat 4.000 ton dan lebar 60 meter. Tinggi patung Garuda Wisnu Kencana ini rencananya akan dibangun setinggi 146 meter. Jika pembangunannya selesai, patung ini akan menjadi patung terbesar di dunia dan mengalahkan Patung Liberty. Garuda Wisnu Kencana Cultural Park berada pada ketinggian 146 meter di atas permukaan tanah atau 263 meter di atas permukaan laut.









Garuda Wisnu Kencana Cultural Park tidak hanya akan menjadi tempat wisata saja, tetapi dapat juga dipergunakan sebagai tempat pementasan seni dan budaya Bali. Banyak kegiatan kesenian dan konser musik yang diselenggarakan di kawasan wisata ini. Satu hal yang menarik dari Garuda Wisnu Kencana Cultural Park adalah kawasan wisata ini merupakan perpaduan dari budaya, tradisi, adat-istiadat, dan teknologi yang bergabung menjadi satu membentuk satu kesatuan. Garuda Wisnu Kencana merupakan sebuah konsep kepercayaan Agama Hindu yang meyakini bahwa Dewa Wisnu merupakan Dewa yang bertugas untuk memelihara keseimbangan alam semesta dan isinya. Konsep inilah yang akan diwujudkan dalam bentuk sebuah konstruksi patung yang menggunakan teknologi masa kini. Lokasi tempat dibangunnya patung ini yang merupakan daerah dengan sebagian besar tanahnya berupa tanah keras memudahkan konstruksi patung ini untuk dibangun. Sampai saat ini, bagian-bagian dari patung Garuda Wisnu Kencana masih berada di Bukti Ungasan, Jimbaran dan dapat disaksikan langsung oleh masyarakat umum.





Keberadaan kawasan wisata Garuda Wisnu Kencana akan memberikan banyak dampak positif bagi masyarakat Bali, khususnya untuk masyarakat yang berada di sekita kawasan wisata ini. Kehadiran wisatawan tentu saja merupakan peluang usaha yang harus dimanfaatkan. Penjualan pernak-pernik, kerajinan khas Bali, dan segala bentuk pertunjukan kesenian merupakan bukti bahwa masyarakat Bali masih konsisten untuk melestarikan seni dan budaya Bali yang telah diwariskan oleh leluhur masyarakat Bali itu sendiri. Garuda Wisnu Kencana Cultural Park akan menjadi satu-satunya tempat dimana budaya, tradisi, dan adat-istiadat yang telah berumur ratusan bahkan ribuan tahun yang lalu dapat menyatu dengan teknologi global yang berkembang saat ini.







Friday, October 1, 2010

Three Gorges Dam : Biggest Dam In World


Cina semakin membuktikan pada dunia bahwa perkembangan teknologi khususnya di bidang infrastruktur berkembang dengan cepat di negara tersebut. Hal ini dibuktikan ketika Cina berhasil membangun salah satu karya monumental dalam bidang Teknik Sipil, yaitu bendungan terbesar di dunia. The Three Gorges Dam itulah nama bendungan yang diklaim sebagai bendungan terbesar yang pernah dibangun oleh umat manusia. Bendungan Three Gorges Dam ini merupakan jenis bendungan hidroelektrik yang dibangun di kawasan Sungai Yangtze. Secara spesifik, bendungan Three Gorges Dam terdapat di District Yiling, Yichang, Provinsi Hubei, China.





Konstruksi pembangunan bendungan ini dimulai pada 14 Desember 1994. Pembangunan bendungan ini, khususnya untuk pembangunan badan bendung selesai pada tahun 2006. Secara keseluruhan, pembangunan bendungan ini selesai pada 30 Oktober 2008. Bendungan Three Gorges Dam ini dilengkapi dengan 26 turbin pembangkit listrik atau generator listrik dengan kapasitas masing-masing 700 MW. Listrik yang dihasilkan oleh bendungan ini sebagian besar merupakan produk komersial. Pembangunan bendungan ini sebelumnya merupakan proyek yang kontroversial. Banyak pihak yang mempertanyakan mengenai keseimbangan ekologis yang diakibatkan bila bendungan ini dibangun. Sebabnya, karena untuk pembangunan bendungan ini, 3 desa harus ditenggelamkan dan banyak masyarakat yang harus dipindahkan akibat konsekuensi logis dari pembangunan bendungan ini.
Bendungan Three Gorges Dam ini memiliki dimensi panjang 2.335 m (7.661 ft) dan dimensi tinggi 185 m (607 ft). Bendungan ini merupakan jenis gravity dam. Kapasitas yang mampu ditampung oleh bendungan ini sebesar 39,3 km3, daerah tangkapan (catchment area) sebesar 1.000.000 km2, dan surface area 1.045 km2. Mengingat daya tampung yang sedemikian besar ini, tidak heran kalau bendungan ini mampu menghasilkan daya listrik yang sangat besar. Kapasitas terinstalasi yang dimiliki oleh bendungan ini sebesar 18.200 MW dan annual generation sebesar 80.000 GWh. Material yang dipergunakan untuk pembangunan bendungan ini membutuhkan 200.000 m3 beton, 463.000 ton baja (jumlah baja sebanyak ini mampu membangun setidaknya 63 menara setara dengan Menara Eiffel), dan 102.600.000 m3 tanah. Pembangunan bendungan ini, khususnya untuk pembangunan dinding bendungan membutuhkan beton dengan dimensi panjang 29 meter (95 ft) dan dimensi tinggi 185 meter (607 ft). Tebal dinding bendungan pada bagian bawah setebal 1 meter (3,3 ft) dan tebal pada bagian atas setebal 40 meter (131,2 ft).





Selain menghasilkan listrik yang sedemikian besar, bendungan Three Gorges Dam ini juga berfungsi untuk irigasi bagi daerah pertanian yang berada di sekitar daerah tangkapan (catchment area) bendungan tersebut. Pemerintah Cina sadar bahwa untuk membangun bendungan ini sebagian besar lingkungan telah mengalami perubahan. Untuk itu, saat ini dan kedepannya, Pemerintah Cina berusaha semaksimal mungkin mengembalikan keseimbangan ekologis yang telah rusak tersebut. Membutuhkan waktu yang lama untuk mengembalikan lingkungan seperti sediakala. Tapi, setidaknya ada upaya yang dilakukan Pemerintah Cina untuk merehabilitasi kembali lingkungan rusak yang berada di sekitar wilayah pembangunan bendungan ini.



Pembangunan apapun, terlebih lagi pembangunan di darat dan sumber-sumber air, sebaiknya memperhatikan juga dampak lingkungan yang akan diakibatkan bila pembangunan tersebut berjalan. Kerusakan lingkungan masih bisa ditolerir bila berada dalam batas yang sewajarnya. Pembangunan infrastruktur tidak mesti harus merusak alam, asal kita mampu menerapkan metode dan cara pembangunan yang sesuai dengan aturan. Akan sangat indah bila suatu saat nanti pembangunan infrastruktur, khususnya di Indonesia, berjalan selaras dan turut juga untuk membantu pengembangan lingkungan hidup di Indonesia.

Tuesday, September 28, 2010

Perencanaan Bendung


Pengertian Bendung
Sebuah bendung memiliki fungsi, yaitu untuk meninggikan muka air sungai dan mengalirkan sebagian aliran air sungai yang ada ke arah tepi kanan dan tepi kiri sungai untuk mengalirkannya ke dalam saluran melalui sebuah bangunan pengambilan jaringan irigasi. Fungsi bendung ini berbeda dengan fungsi bendungan dimana sebuah bendungan berfungsi sebagai penangkap air dan menyimpannya di musim hujan waktu air sungai mengalir dalam jumlah besar dan yang melebihi kebutuhan. Air yang ditampung di dalam bendungan ini dipergunakan untuk keperluan irigasi, air minum, industri, dan kebutuhan-kebutuhan lainnya. Kelebihan dari sebuah bendungan, yaitu dengan memiliki daya tampung tersebut, sejumlah besar air sungai yang melebihi kebutuhan dapat disimpan dalam waduk dan baru dilepas mengalir ke dalam sungai lagi di hilirnya sesuai dengan kebutuhan saja pada waktu yang diperlukan. Bendung juga dapat didefinisikan sebagai bangunan air yang dibangun secara melintang sungai, sedemikian rupa agar permukaan air sungai di sekitarnya naik sampai ketinggian tertentu, sehingga air sungai tadi dapat dialirkan melalui pintu sadap ke saluran-saluran pembagi kemudian hingga ke lahan-lahan pertanian (Kartasapoetra, 1991: 37).



Suatu konstruksi sebuah bendung dapat dibuat dari urugan tanah, pasangan batu kali, dan bronjong atau beton. Sebuah bendung konstruksinya dibuat melintang sungai dan fungsi utamanya adalah untuk membendung aliran sungai dan menaikkan level atau tingkat muka air di bagian hulu. Sebelum membangun sebuah konstruksi bendung, terlebih dahulu ditentukan lokasi atau di bagian sungai mana bendung tersebut akan dibangun. Ini terkait dengan wilayah atau luas petak-petak sawah yang aliran air irigasinya akan dibantu oleh adanya konstruksi bendung tersebut. Pemilihan lokasi bendung hendaknya memperhatikan beberapa hal-hal seperti, wilayah atau topografi daerah yang akan dialiri, topografi lokasi bendung, keadaan hidrolis aliran sungai, keadaan tanah pondasi, dan lain sebagainya. Selain hal-hal utama yang telah disebutkan tadi, terdapat pula hal-hal khusus yang harus tetap diperhatikan sebelum membangun sebuah konstruksi bendung, misalnya konstruksi bendung harus direncanakan sedemikian rupa agar seluruh daerah dapat dialiri secara proses gravitasi, tinggi bendung dari dasar sungai tidak lebih dari tujuh meter, saluran induk tidak melewati trase yang sulit, letak bangunan pengambilan (intake) harus di letakkan sedemikian rupa sehingga dapat menjamin kelancaran masuknya air, sebaiknya lokasi bendung itu berada pada alur sungai yang lurus, keadaan pondasi cukup baik, tidak menimbulkan genangan yang luas di udik bendung serta tanggul banjir sependek mungkin, dan pelaksanaan tidak sulit dan biaya pembangunan tidak mahal. Untuk keperluan perencanaan dan pembangunan suatu konstruksi bendung, diperlukan pula data-data yang nanti akan dipergunakan untuk menentukan dimensi, luasan, dan bagian-bagian bendung yang perlu dibangun. Data-data tersebut, misalnya data topografi, data hidrologi, data morfologi, data geologi, data mekanika tanah, standar perencanaan (PBI, PKKI, PMI, dll), data lingkungan, dan data ekologi. Selain itu, diperlukan juga data-data terkait tentang curah hujan di derah tersebut, data debit banjir, dan data-data lain yang terkait dengan keadaan hidrologis daerah tersebut. Semua data-data ini dipergunakan untuk perencanaan dan pembangunan sebuah konstruksi bendung.



Syarat-syarat konstruksi bendung harus memenuhi beberapa faktor, yaitu
• Bendung harus stabil dan mampu menahan tekanan air pada waktu banjir;
• Pembuatan bendung harus memperhitungkan kekuatan daya dukung tanah di bawahnya;
• Bendung harus dapat menahan bocoran (seepage) yang disebabkan oleh aliran air sungai dan aliran air yang meresap ke dalam tanah;
• Tinggi ambang bendung harus dapat memenuhi tinggi muka air minimum yang diperlukan untuk seluruh daerah irigasi;
• Bentuk peluap harus diperhitungkan, sehingga air dapat membawa pasir, kerikil dan batu-batu dari sebelah hulu dan tidak menimbulkan kerusakan pada tubuh bendung.

Pemilihan lokasi pembangunan bendung harus didasarkan atas beberapa faktor, yaitu

• Keadaan Topografi
o Dalam hal ini semua rencana daerah irigasi dapat terairi, sehingga harus dilihat elevasi sawah tertinggi yang akan diari;
o Bila elevasi sawah tertinggi yang akan diairi telah diketahui maka elevasi mercu bendung dapat ditetapkan;
o Dari kedua hal di atas, lokasi bendung dilihat dari segi topografi dapat diseleksi.

• Keadaan Hidrologi
Dalam pembuatan bendung, yang patut diperhitungkan juga adalah faktor – faktor hidrologinya, karena menentukan lebar dan panjang bendung serta tinggi bendung tergantung pada debit rencana. Faktor – faktor yang diperhitungkan, yaitu masalah banjir rencana, perhitungan debit rencana, curah hujan efektif, distribusi curah hujan, unit hidrograf, dan banjir di site atau bendung.

• Kondisi Topografi
Dilihat dari lokasi, bendung harus memperhatikan beberapa aspek, yaitu
o Ketinggian bendung tidak terlalu tinggi;
o Trase saluran induk terletak di tempat yang baik.

• Kondisi Hidraulik dan Morfologi
o Pola aliran sungai meliputi kecepatan dan arahnya pada waktu debit banjir;
o Kedalaman dan lebar muka air pada waktu debit banjir;
o Tinggi muka air pada debit banjir rencana;
o Potensi dan distribusi angkutan sedimen.

• Kondisi Tanah Pondasi
Bendung harus ditempatkan di lokasi dimana tanah pondasinya cukup baik sehingga bangunan akan stabil. Faktor lain yang harus dipertimbangkan pula yaitu potensi kegempaan dan potensi gerusan karena arus dan sebagainya.

• Biaya Pelaksanaan
Biaya pelaksanaan pembangunan bendung juga menjadi salah satu faktor penentu pemilihan lokasi pembangunan bendung. Dari beberapa alternatif lokasi ditinjau pula dari segi biaya yang paling murah dan pelaksanaan yang tidak terlalu sulit.

Pembagian Jenis-Jenis Bendung

• Berdasarkan cara pembendungannya
Pembendungan air dapat tidak hanya dengan puncak pelimpah yang permanen saja, tetapi dapat juga dilengkapi dengan pintu pengatur yang bekerja di atas puncak ambang bendung. Berdasarkan hal tersebut, maka bendung dapat dibagi, yaitu
o Bendung
Bila seluruh atau sebagian besar dari pembendungannya dilakukan oleh sebuah puncak pelimpah yang permanen. Meskipun bendung juga dilengkapi dengan pintu, tetapi bagian dari pintu ini lebih kecil dalam pelaksanaan pembendungan air.
o Baragge
Jika seluruh pembendungan atau sebagian besar dari pembendungan dilakukan oleh pintu. Pada barrage yang pembendungannya dilakukan seluruhnya oleh pintu, maka pada waktu banjir pintu tersebut dibuka sehingga peluapannya akan menjadi minimum atau berkurang.

• Berdasarkan Fungsinya
o Bendung Pengarah ( Diversion Weir )
Diversion Weir adalah suatu bangunan pelimpah dengan atau tanpa pintu penutup dan terletak melintang atau memotong kedalaman dasar sungai. Fungsinya adalah untuk membelokkan air sungai ke saluran primer.
o Bendung Penahan
Fungsinya adalah untuk menyimpan air banjir atau manahan air banjir pada saat banjir datang sebagai penahan atau pengontrol banjir.

• Berdasarkan Bentuk dan Material Konstruksi
o Masonary Weir With Vertical Drops.
Bendung tipe ini terdiri dari sebuah lantai horisontal dan sebuah puncak ambang dari pasangan batu tembok dengan permukaan air hampir tegak. Bendung tipe ini cocok untuk tanah dasar lempung keras.
o Rock Dry Stone Weir.
Bendung tipe ini adalah tipe yang sederhana, tipe ini cocok untuk tanah dasar berpasir halus seperti tanah alluvial. Bendung tipe ini juga membutuhkan jumlah batu yang sangat banyak, jadi bendung tipe ini tidak banyak dipakai.

Bangunan Yang Terdapat Pada Bendung

• Tubuh Bendung (Weir)
Tubuh bendung merupakan struktur utama yang berfungsi untuk membendung laju aliran sungai dan menaikkan tinggi muka air sungai dari elevasi awal. Bagian ini biasanya terbuat dari urugan tanah, pasangan batu kali, dan bronjong atau beton. Tubuh bendung umumnya dibuat melintang pada aliran sungai. Tubuh bendung merupakan bagian yang selalu atau boleh dilewati air baik dalam keadaan normal maupun air banjir. Tubuh bendung harus aman terhadap tekanan air, tekanan akibat perubahan debit yang mendadak, tekanan gempa,dan akibat berat sendiri.




• Pintu Air (Gates)
Pintu air merupakan struktur dari bendung yang berfungsi untuk mengatur, membuka, dan menutup aliran air di saluran baik yang terbuka maupun tertutup. Bagian yang penting dari pintu air, yaitu
o Daun Pintu (Gate Leaf)
Adalah bagian dari pintu air yang menahan tekanan air dan dapat digerakkan untuk membuka, mengatur, dan menutup aliran air.
o Rangka pengatur arah gerakan (guide frame)
Adalah alur dari baja atau besi yang dipasang masuk ke dalam beton yang digunakan untuk menjaga agar gerakan dari daun pintu sesuai dengan yang direncanakan.
o Angker (anchorage)
Adalah baja atau besi yang ditanam di dalam beton dan digunakan untuk menahan rangka pengatur arah gerakan agar dapat memindahkan muatan dari pintu air ke dalam konstruksi beton.
o Hoist
Adalah alat untuk menggerakkan daun pintu air agar dapat dibuka dan ditutup dengan mudah.

• Pintu Pengambilan (Intake)
Pintu pengambilan berfungsi mengatur banyaknya air yang masuk saluran dan mencegah masuknya benda-benda padat dan kasar ke dalam saluran. Pada bendung, tempat pengambilan bisa terdiri dari dua buah, yaitu kanan dan kiri, dan bisa juga hanya sebuah, tergantung dari letak daerah yang akan diairi. Bila tempat pengambilan dua buah, menuntut adanya bangunan penguras dua buah pula. Kadang-kadang bila salah satu pintu pengambilam debitnya kecil, maka pengambilannya lewat gorong-gorong yang di buat pada tubuh bendung. Hal ini akan menyebabkan tidak perlu membuat dua bangunan penguras dan cukup satu saja.

• Pintu Penguras
Penguras ini bisanya berada pada sebelah kiri atau sebelah kanan bendung dan kadang-kadang ada pada kiri dan kanan bendung. Hal ini disebabkan letak daripada pintu pengambilan. Bila pintu pengambilan terletak pada sebelah kiri bendung, maka penguras pun terletak pada sebelah kiri pula. Bila pintu pengambilan terletak pada sebelah kanan bendung, maka penguras pun terletak pada sebelah kanan pula. Sekalipun kadang-kadang pintu pengambilan ada dua buah, mungkin saja bangunan penguras cukup satu hal ini terjadi bila salah satu pintu pengambilan lewat tubuh bendung. Pintu penguras ini terletak antara dinding tegak sebelah kiri atau kanan bendung dengan pilar, atau antara pilar dengan pilar. Lebar pilar antara 1,00 sampai 2,50 meter tergantung konstruksi apa yang dipakai. Pintu penguras ini berfungsi untuk menguras bahan-bahan endapan yang ada pada sebelah udik pintu tersebut. Untuk membilas kandungan sedimen dan agar pintu tidak tersumbat, pintu tersebut akan dibuka setiap harinya selama kurang lebih 60 menit. Bila ada benda-benda hanyut mengganggu eksploitasi pintu penguras, sebaiknya dipertimbangkan untuk membuat pintu menjadi dua bagian, sehingga bagian atas dapat diturunkan dan benda-benda hanyut dapat lewat diatasnya.






• Kolam Peredam Energi
Bila sebuah konstruksi bendung dibangun pada aliran sungai baik pada palung maupun pada sodetan, maka pada sebelah hilir bendung akan terjadi loncatan air. Kecepatan pada daerah itu masih tinggi, hal ini akan menimbulkan gerusan setempat (local scauring). Untuk meredam kecepatan yang tinggi itu, dibuat suatu konstruksi peredam energi. Bentuk hidrolisnya adalah merupakan suatu bentuk pertemuan antara penampang miring, penampang lengkung, dan penampang lurus. Secara garis besar konstruksi peredam energi dibagi menjadi 4 (empat) tipe, yaitu
o Ruang Olak Tipe Vlughter
Ruang olak ini dipakai pada tanah aluvial dengan aliran sungai tidak membawa batuan besar. Bentuk hidrolis kolam ini akan dipengaruhi oleh tinggi energi di hulu di atas mercu dan perbedaan energi di hulu dengan muka air banjir hilir.
o Ruang Olak Tipe Schoklitsch
Peredam tipe ini mempunyai bentuk hidrolis yang sama sifatnya dengan peredam energi tipe Vlughter. Berdasarkan percobaan, bentuk hidrolis kolam peredam energi ini dipengaruhi oleh faktor-faktor, yaitu tinggi energi di atas mercu dan perbedaan tinggi energi di hulu dengan muka air banjir di hilir.
o Ruang Olak Tipe Bucket
Kolam peredam energi ini terdiri dari tiga tipe, yaitu solid bucket, slotted rooler bucket atau dentated roller bucket, dan sky jump. Ketiga tipe ini mempunyai bentuk hampir sama dengan tipe Vlughter, namun perbedaanya sedikit pada ujung ruang olakan. Umumnya peredam ini digunakan bilamana sungai membawa batuan sebesar kelapa (boulder). Untuk menghindarkan kerusakan lantai belakang maka dibuat lantai yang melengkung sehingga bilamana ada batuan yang terbawa akan melanting ke arah hilirnya.
o Ruang Olak Tipe USBR
Tipe ini biasanya dipakai untuk head drop yang lebih tinggi dari 10 meter. Ruang olakan ini memiliki berbagai variasi dan yang terpenting ada empat tipe yang dibedakan oleh rezim hidraulik aliran dan konstruksinya. Tipe-tipe tersebut, yaitu ruang olakan tipe USBR I merupakan ruang olakan datar dimana peredaman terjadi akibat benturan langsung dari aliran dengan permukaan dasar kolam, ruang olakan tipe USBR II merupakan ruang olakan yang memiliki blok-blok saluran tajam (gigi pemencar) di ujung hulu dan di dekat ujung hilir (end sill) dan tipe ini cocok untuk aliran dengan tekanan hidrostatis lebih besar dari 60 m, ruang olakan tipe USBR III merupakan ruang olakan yang memiliki gigi pemencar di ujung hulu, pada dasar ruang olak dibuat gigi penghadang aliran, di ujung hilir dibuat perata aliran, dan tipe ini cocok untuk mengalirkan air dengan tekanan hidrostatis rendah, dan ruang olakan tipe USBR VI merupakan ruang olakan yang dipasang gigi pemencar di ujung hulu, di ujung hilir dibuat perata aliran, cocok untuk mengalirkan air dengan tekanan hidrostatis rendah, dan Bilangan Froud antara 2,5 - 4,5.
o Ruang Olak Tipe The SAF Stilling Basin (SAF = Saint Anthony Falls)
Ruang olakan tipe ini memiliki bentuk trapesium yang berbeda dengan bentuk ruang olakan lain dimana ruang olakan lain berbentuk melebar. Bentuk hidrolis tipe ini mensyaratkan Fr (Bilangan Froude) berkisar antara 1,7 sampai dengan 17. Pada pembuatan kolam ini dapat diperhatikan bahwa panjang kolam dan tinggi loncatan dapat di reduksi sekitar 80% dari seluruh perlengkapan. Kolam ini akan lebih pendek dan lebih ekonomis akan tetapi mempunyai beberapa kelemahan, yaitu faktor keselamatan rendah (Open Channel Hidraulics, V.T.Chow : 417-420)

• Kantong Lumpur
Kantong lumpur berfungsi untuk mengendapkan fraksi-fraksi sedimen yang lebih besar dari fraksi pasir halus ( 0,06 s/d 0,07mm ) dan biasanya ditempatkan persis disebelah hilir bangunan pengambilan. Bahan-bahan yang telah mengendap dalam kantung lumpur kemudian dibersihkan secara berkala melalui saluran pembilas kantong lumpur dengan aliran yang deras untuk menghanyutkan endapan-endapan itu ke sungai sebelah hilir.

• Bangunan Pelengkap
Terdiri dari bangunan-bangunan atau pelengkap yang akan ditambahkan ke bangunan utama untuk keperluan :
o Pengukuran debit dan muka air di sungai maupun di saluran sungai.
o Pengoperasian pintu.
o Peralatan komunikasi, tempat berteduh serta perumahan untuk tenaga eksploitasi dan pemeliharaan.
o Jembatan diatas bendung agar seluruh bagian bangunan utama mudah dijangkau atau agar bagian-bagian itu terbuka untuk umum.




Keadaan Tubuh Bendung

• Menentukan Tinggi Muka Air Maksimum Pada Sungai
Dalam menentukan tinggi muka air maksimum pada sungai dipengaruhi oleh:
o Kemiringan dasar sungai ( I );
o Lebar dasar sungai (b);
o Debit maksimum (Qd).

• Menentukan Tinggi Mercu Bendung
Tinggi mercu bendung dipengaruhi oleh beberapa faktor, yaitu
o Elevasi sawah bagian hilir tertinggi dan terjauh;
o Elevasi kedalaman air di sawah;
o Kehilangan tekanan dari saluran tersier ke sawah;
o Kehilangan tekanan dari saluran sekunder ke saluran tersier;
o Kehilangan tekanan dari saluran primer ke saluran sekunder;
o Kehilangan tekanan karena kemiringan saluran;
o Kehilangan tekanan di alat – alat ukur;
o Kehilangan tekanan dari sungai ke saluran primer;
o Persediaan tekanan untuk eksploitasi;
o Persediaan untuk bangunan lain.
Tinggi mercu bendung, p, yaitu ketinggian antara elevasi lantai udik atau dasar sungai di udik bendung dan elevasi mercu. Dalam menentukan tinggi mercu bendung maka harus dipertimbangkan terhadap :
o Kebutuhan penyadapan untuk memperoleh debit dan tinggi tekan;
o Kebutuhan tinggi energi untuk pembilasan;
o Tinggi muka air genangan yang akan terjadi;
o Kesempurnaan aliran pada bendung;
o Kebutuhan pengendalian angkutan sedimen yang terjadi di bendung;
o Tinggi mercu bendung, dianjurkan tidak lebih dari 4,00 meter dan minimum 0,5 H (H = tinggi energi di atas mercu).

• Menentukan Tinggi Air di Atas Mercu Bendung
Tinggi air di atas mercu bendung dipengaruhi oleh:
o Lebar Bendung (B)
Lebar bendung adalah jarak antara dua tembok pangkal bendung (abutment), termasuk lebar bangunan pembilas dan pilar-pilarnya. Ini disebut lebar mercu bruto. Biasanya lebar bendung (B) < 6/5 lebar normal (Bn). Dalam penentuan panjang mercu bendung, maka harus diperhitungkan terhadap :
1. Kemampuan melewatkan debit desain dengan tinggi jagaan yang cukup;
2. Batasan tinggi muka air genangan maksimum yang diijinkan pada debit desain.
Berkaitan dengan itu panjang mercu dapat diperkirakan, yaitu
1. Sama lebar dengan lebar rata-rata sungai stabil atau pada debit penuh alur (bank full discharge);
2. Umunya diambil sebesar 1,2 kali lebar sungai rata-rata, pada ruas sungai yang telah stabil.
Pengambilan lebar mercu tidak boleh terlalu pendek dan tidak pula terlalu lebar. Bila desain panjang mercu bendung terlalu pendek, akan memberikan tinggi muka air di atas mercu lebih tinggi. Akibatnya tanggul banjir di udik akan bertambah tinggi pula. Demikian pula genangan banjir akan bertambah luas. Sebaliknya bila terlalu lebar dapat mengakibatkan profil sungai bertambah lebar pula sehingga akan terjadi pengendapan sedimen di udik bendung yang dapat menimbulkan gangguan penyadapan aliran ke intake.

• Lebar Efektif Bendung
Lebar efektif bendung adalah lebar bendung yang bermanfaat untuk melewatkan debit. Untuk menetapkan besarnya lebar efektif bendung, pelu diketahui mengenai eksploitasi bendung, karena pengaliran air di atas pintu lebih sukar daripada pengairan air di atas mercu bendung, maka kemampuan pintu pembilas untuk pengaliran air dianggap hanya 80%.

• Menentukan Panjang dan Dalam Kolam Olak
Kolam olak adalah suatu konstruksi yang berfungsi sebagai peredam energi yang terkandung dalam aliran dengan memanfaatkan loncatan hidraulis dari suatu aliran yang berkecepatan tinggi. Kolam olak sangat ditentukan oleh tinggi loncatan hidraulis, yang terjadi di dalam aliran.

• Menentukan Panjang Lantai Muka
Akibat dari pembendungan sungai akan menimbulkan pebedaan tekanan, selanjutnya akan terjadi pengaliran di bawah bendung. Karena sifat air mencari jalan dengan hambatan yang paling kecil yang disebut “Creep Line”, maka untuk memperbesar hambatan, Creep Line harus diperpanjang dengan memberi lantai muka atau suatu dinding vertical. Untuk menentukan Creep Line, maka dapat dicari dengan rumus atau teori :

o Teori Bligh
Menyatakan bahwa besarnya perbedaan tekanan di jalur pengaliran adalah sebanding dengan panjang jalan Creep Line.

o Teori Lane
Teori Lane ini memberikan koreksi terhadap teori Bligh, bahwa energi yang diperlukan oleh air untuk mengalir ke arah vertical lebih besar daripada arah horizontal dengan perbandingan 3:1.

• Menentukan Stabilitas Bendung
Untuk mengetahui kekuatan bendung, sehingga konstruksi bendung sesuai dengan yang direncanakan dan memenuhi syarat yang telah ditentukan. Stabilitas bendung ditentukan oleh gaya – gaya yang bekerja pada bendung, seperti:
o Gaya berat;
o Gaya gempa;
o Tekanan Lumpur;
o Gaya hidrostatis;
o Gaya Uplift Pressure (Gaya Angkat).

• Perencanaan Pintu
Perencanaan pintu berfungsi mengatur banyaknya air yang masuk ke saluran dan mencegah masuknya benda-benda padat dan kasar ke dalam saluran (pintu pengambilan atau intake gate). Pada bendung tempat pengambilan bisa terdiri dari 2 pintu yaitu kanan dan kiri, bisa juga hanya satu tergantung letak daerah yang akan dialiri. Tinggi ambang tergantung pada material yang terbawa oleh sungai. Ambang makin tinggi makin baik, untuk mencegah masuknya benda padat dan kasar ke saluran, tapi tinggi ini ditentukan atau dibatasi oleh ukuran pintu. Pada waktu banjir, pintu pengambilan cukup ditutup untuk mencegah masuknya benda kasar ke saluran. Penutupan pintu tidak berakibat apa apa karena saat banjir di sungai biaanya tidak lama. Maka yang dianggap air normal pada sungai adalah setinggi mercu. Ukuran pintu ditentukan dari segi praktis dan estetika. Lebar pintu biasanya maksimal 2 m untuk pintu dari kayu. Jika terdapat ukuran yang lebih besar dari 2 m, harus dibuat lebih dari satu pintu dengan pilar-pilar diantaranya.

• Pintu Penguras
Lebar pintu penguras biasanya diambil dari 1/10 lebar bendung (B), sedangkan pada saat banjir pintu penguras ditutup. Bila banjir lewat di atas pintu, maka tinggi pintu penguras harus setinggi mercu bendung. Oleh karena itu, tebal pintu juga harus diperhitungkan untuk tinggi air setinggi air banjir.

Stabilitas Bendung

Stabilitas suatu bendung harus memenuhi syarat – syarat konstruksi dari bendung, antara lain:
• Bendung harus stabil dan mampu menahan tekanan air pada waktu banjir;
• Bendung harus dapat menahan bocoran yang disebabkan oleh aliran sungai dan aliran air yang meresap di dalam tanah;
• Bendung harus diperhitungkan terhadap daya dukung tanah di bawahnya;
• Tinggi ambang bendung atau crest level harus dapat memenuhi tinggi muka air minimum yang diperlukan untuk seluruh daerah irigasi;
• Peluap harus berbentuk sedemikian rupa agar air dapat membawa pasir, kerikil, dan batu – batuan dan tidak menimbulkan kerusakan pada puncak ambang.





Tipe-Tipe Mercu Bendung

• Tipe Mercu Bulat
Untuk bendung dengan mercu bulat memiliki harga koefisien debit yang jauh lebih tinggi (44%) dibandingkan koefisien bendung ambang lebar. Pada sungai – sungai, type ini banyak memberikan keuntungan karena akan mengurangi tinggi muka air hulu selama banjir. Harga koefisien debit menjadi lebih tinggi karena lengkung stream line dan tekanan negatif pada mercu. Untuk bendung dengan 2 jari – jari hilir akan digunakan untuk menemukan harga koefisien debit.

• Tipe Mercu Ogee
Bentuk mercu type Ogee ini adalah tirai luapan bawah dari bendung ambang tajam aerasi. Sehingga mercu ini tidak akan memberikan tekanan sub atmosfer pada permukaan mercu sewaktu bendung mengalirkan air pada debit rencananya. Untuk bagian hulu mercu bervariasi sesuai dengan kemiringan permukaan hilir. Salah satu alasan dalam perencanaan digunakan Tipe Ogee adalah karena tanah disepanjang kolam olak, tanah berada dalam keadaan baik, maka tipe mercu yang cocok adalah tipe mercu ogee karena memerlukan lantai muka untuk menahan penggerusan, digunakan tumpukan batu sepanjang kolam olak sehingga dapat lebih hemat.

• Tipe Mercu Vlughter
Tipe ini digunakan pada tanah dasar aluvial dengan kondisi sungai tidak membawa batuan-batuan besar. Tipe ini banyak dipakai di Indonesia.

• Tipe Mercu Schoklitsch
Tipe ini merupakan modifikasi dari tipe Vlughter terlalu besar yang mengakibatkan galian atau koperan yang sangat besar.

Wednesday, September 22, 2010

Kansai International Airport: Bandara di Tengah Laut


Kansai International Airport merupakan bandara pertama di Jepang yang dibangun di tengah laut dalam bentuk seperti pulau buatan. Bandara ini pertama kali dibuka untuk umum pada 4 September 1994. Sejarah pembangunan bandara ini bermula pada awal tahun 1960 ketika Bandara Narita di Tokyo tidak mampu lagi untuk menampung jumlah penumpang yang akan diberangkatkan. Pengembang kemudian menyusun sebuah rencana pembangunan bandara baru yang akan dibangun dekat dengan kota Kobe dan kota Osaka. Rencananya bandara baru tersebut akan diberi nama Osaka International Airport. Pembangunan bandara ini urung dilaksanakan karena banyaknya protes yang berkaitan dengan polusi udara yang akan ditimbulkan bila pembangunan bandara ini jadi dilaksanakan. Untuk mengatasi permasalahan ini, pengembang pun mengusulkan agar bandara baru yang nanti akan dibangun tidak berada di tengah pemukiman penduduk, tetapi dipindahkan ke daerah yang dampak kerusakan lingkungannya relatif kecil jika pembangunan bandara ini jadi dilaksanakan. Pembangunan bandara pun tetap dilaksanakan dengan tempat pembangunan dilaksanakan di Osaka Bay yang relatif jauh dari pemukiman penduduk.



Pulau buatan yang dibuat untuk pembangunan bandara memiliki panjang 4 km (2,5 mil) dan lebar (1,6 mil). Pembangunan bandara ini direncanakan sangat hati-hati karena memikirkan juga terhadap efek gempa dan badai yang mungkin saja dapat terjadi jika pembangunan bandara telah selesai. Konstruksi bandara ini dimulai pada tahun 1987 dengan fokus pertama adalah pembangunan pondasi bagi pulau buatan ini. Konstruksi pembangunan pondasi ini memerlukan perencanaan yang sangat matang utamanya untuk menentukan jenis pondasi yang akan dipergunakan dan juga bahaya ombak yang mungkin saja dapat masuk ke dalam area bandara. Untuk pembuatan pondasi atau dinding laut ini diperlukan 48.000 balok beton berbentuk tetrahedral dan juga material-material yang lainnya seperti tanah yang dibutuhkan mencapai 21.000.000 m3. Waktu pembuatan pondasi atau dinding laut ini selama 2 tahun dan selesai pada tahun 1989. 10.000 pekerja dan 80 kapal diperlukan untuk menyelesaikan 30 meter (98 ft) lapisan pertama yang berada di atas pondasi atau dinding laut ini. Pada tahun 1990, jembatan yang menghubungkan antara bandara di tengah laut dengan daratan telah rampung sepanjang 3 kilometer. Permasalahan utama yang dihadapi saat konstruksi adalah kemungkinan turunnya pondasi atau lapisan yang berada di atas pondasi. Kemungkinan ini telah diprediksikan sebelumnya mengingat kondisi bandara yang dibangun di tengah laut. Pada tahun 1991, pembangunan terminal bandara mulai dilaksanakan dan dilanjutkan dengan pembangunan runway, jembatan, dan juga fasilitas-fasilitas lainnya. Runway kedua dibangun pada 2 Agustus 2007 untuk menambah fasilitas runway karena volume penerbangan semakin meningkat. Pada tanggal 19 April 2001, Bandara Kansai mendapatkan penghargaan “Civil Engineering Monument of the Millennium” yang diberikan oleh American Society of Civil Engineers. Biaya yang dibutuhkan untuk untuk pembangunan bandara ini mencapai $ 20 billion yang mencakup biaya reklamasi lahan, pembangunan 2 runway, pembangunan terminal bandara, pembangunan jembatan penghubung, dan pembangunan fasilitas-fasilitas lainnya.



Bandara Kansai melayani penerbangan internasional dari seluruh dunia. Sebagai salah satu bandara internasional yang ada di Jepang, pihak pengelola bandara Kansai yaitu Kansai Internationa Airport Co., Ltd, melakukan berbagai macam usaha untuk memberikan kenyamanan bagi para penumpang. Keamanan di dalam dan di luar area bandara Kansai juga dilakukan dengan ketat. Transportasi yang dapat dipergunakan untuk menuju ke bandara dapat menggunakan jembatan penghubung yang telah disediakan. Jembatan penghubung ini dapat membawa penumpang langsung menuju ke areal bandara. Penumpang dapat juga menggunakan kereta, bus, dan juga kapal feri untuk menuju ke bandara. Transportasi diatur sedemikian rupa sehingga penumpang dapat dengan aman dan nyaman menuju ke bandara tanpa khawatir mengalami gangguan selama perjalanan menuju ke bandara.



Sunday, September 19, 2010

Limbah Cair dan Cara Daur Ulangnya



I. Pengertian limbah cair.
Limbah adalah buangan yang dihasilkan dari suatu proses produksi baik industri maupun domestik (rumah tangga). Dimana masyarakat bermukim, disanalah berbagai jenis limbah akan dihasilkan. Ada sampah, ada air kakus (black water), dan ada air buangan dari berbagai aktivitas domestik lainnya (grey water). Limbah cair dapat diartikan sebagai hasil buangan yang berbentuk cair atau liquid. Limbah jenis ini dapat dihasilkan dari kegiatan atau proses di dalam rumah tangga, industri, bahkan kegiatan atau proses di dalam pertambangan. Limbah cair lebih dikenal sebagai sampah, yang seringkali tidak dikehendaki kehadirannya karena tidak memiliki nilai ekonomis. Bila ditinjau secara kimiawi, limbah ini terdiri dari bahan kimia senyawa organik dan senyawa anorganik. Dengan konsentrasi dan kuantitas tertentu, kehadiran limbah dapat berdampak negatif terhadap lingkungan terutama bagi kesehatan manusia, sehingga perlu dilakukan penanganan terhadap limbah. Tingkat bahaya keracunan yang ditimbulkan oleh limbah tergantung pada jenis dan karakteristik limbah. Air limbah ini umumnya dibuang melalui saluran / got menuju sungai ataupun laut. Terkadang dalam perjalannya menuju laut, air limbah ini dapat mencemari sumber air bersih yang dipergunakan oleh manusia. Dengan demikian penanganan air limbah perlu mendapat perhatian serius. Selain dapat berbahaya bagi kesehatan manusia, air limbah juga dapat mengganggu lingkungan, hewan, ataupun bagi keindahan.
Terkadang limbah cair bersumber dari pabrik yang biasanya banyak menggunakan air dalam sistem prosesnya. Di samping itu ada pula bahan baku mengandung air sehingga dalam proses pengolahannya air harus dibuang. Air terikut sertab di dalam proses pengolahan kemudian dibuang misalnya ketika dipergunakan untuk pencuci suatu bahan sebelum diproses lanjut. Air ditambah bahan kimia tertentu kemudian di-proses dan setelah itu dibuang,Semua jenis perlakuan ini mengakibatkan buangan air. Pada beberapa pabrik tertentu, misalnya pabrik pengolahan kawat, seng, besi baja – sebagian besar air dipergunakan untuk pendinginan mesin ataupun dapur pengecoran. Air ini dipompa dari sumbernya lalu dilewatkan pada bagian-bagian yang membutuhkan pendinginan, kemudian dibuang. Oleh sebab itu pada saluran pabrik terlihat air mengalir dalam volume yang cukup besar. Air ketel akan dibuang pada waktu-waktu tertentu setelah melalui pemeriksaan laboratorium, sebab air ini tidak memenuhi syarat lagi sebagai air ketel dan karenanya harus dibuang. Bersamaan dengan itu dibutuhkan pula sejumlah air untuk mencuci bagian dalam ketel air pencuci ini juga harus dibuang. Inilah yang menyebabkan limbah cair terdapat dalam jumlah besar di alam, terutama di lingkungan perkotaan, pertambangan, dan perindustrian.

II. Karakteristik limbah cair.
Karakteristik dari limbah cair dapat dilihat dari asal tempat atau sumber tempat limbah cair tersebut dapat dihasilkan. Pencucian lantai pabrik setiap hari untuk beberapa pabrik tertentu membutuhkan air dalam jumlah banyak. Pabrik pengalengan ikan membutuhkan air pencuci dalam jumlah yang relatif harus banyak, Jumlah air terus menerus diperlukan mencuci peralatan, lantai dan lainlain,Karat perlu dicuci sebelum masuk pencincangan dan pada saat dicincang air terus-menerus mengalir untuk menghilangkan pasir abu yang terbawa.
Air dari pabrik membawa sejumlah padatan dan partikel baik yang larut maupun mengendap. Bahan ini ada yang kasar dan halus. Kerap kali air dari pabrik berwarna keruh dan temperaturnya tinggi. Air yang mengandung senyawa kimia beracun dan berbahaya mempunyai sifat tersendiri. Air limbah yang telah tercemar memberikan 577 ciri yang dapat diidentifikasi secara visual dapat diketahui dari kekeruhan, warna air, rasa, bau yang ditimbulkan dan indikasi lainnya.
Sedangkan identifikasi secara laboratorium, ditandai dengan perubahan sifat kimia air di mana air telah mengandung bahan kimia yang beracun dan berbahaya dalam konsentrasi yang melebihi batas dianjurkan. Jenis industri menghasilkan limbah cair di antaranya adalah industri-industri pulp dan rayon, pengolahan crumb rubber, minyak kelapa sawit, baja dan besi, minyak goreng, kertas, tekstil, kaustiksoda, elektro plating, plywood, tepung tapioka, pengalengan, pencelupan dan pewarnaan, daging dan lain-lain.
Jumlah limbah yang dikeluarkan masing-masing industri ini tergantung pada banyak produksi yang dihasilkan, serta jenis produksi. Industri pulp dan rayon menghasilkan limbah air sebanyak 30 m3 setiap ton pulp yang diproduksi. Untuk industri ikan dan makanan laut limbah air berkisar antara 79 m3 sampai dengan 500 m3 per hari, industri pengolahan crumb rubber limbah air antara 100 m3 s/d 2000 m3 per hari, dan industri pengolahan kelapa sawit mempunyai limbah air rata-rata 120 m3 per hari skala menengah.




III. Industri-industri penghasil limbah cair.
1. Industri tahu dan tempe.
Sebagian besar limbah cair yang dihasilkan oleh industri pembuatan tahu adalah cairan kental yang terpisah dari gumpalan tahu yang disebut air dadih. Cairan ini mengandung kadar protein yang tinggi dan dapat segera terurai. Limbah cair ini sering dibuang secara langsung sehingga menghasilkan bau busuk dan mencemari sungai. Sumber limbah cair lainnya berasal dari pencucian kedelai, pencucian peralatan proses, pencucian lantai dan pemasakan serta larutan bekas rendaman kedelai. Jumlah limbah cair yang dihasilkan oleh industri pembuat tahu kira-kira 15-20 l/kg bahan baku kedelai, sedangkan bahan pencemarnya kira-kira untuk TSS sebesar 30 kg/kg bahan baku kedelai, BOD 65 g/kg bahan baku kedelai dan COD 130 g/kg bahan baku kedelai (EMDI & BAPEDAL, 1994). Pada industri tempe, sebagian besar limbah cair yang dihasilkan berasal dari lokasi pemasakan kedelai, pencucian kedelai, peralatan proses dan lantai. Karakter limbah cair yang dihasilkan berupa bahan organik padatan tersuspensi (kulit, selaput lendir dan bahan organik lain) (Darmono, 2001). Industri pembuatan tahu dan tempe harus berhati-hati dalam program kebersihan pabrik dan pemeliharaan peralatan yang baik karena secara langsung hal tersebut dapat mengurangi kandungan bahan protein dan organik yang terbawa dalam limbah cair. Kunci untuk mengurangi pencemaran adalah mencegah bahan-bahan yang masih bermanfaat terbawa limbah cair . Larutan bekas pemasakan dan perendaman dapat didaur ulang kembali dan digunakan sebagai air pencucian awal kedelai. Perlakuan hati-hati juga dilakukan pada gumpalan tahu yang terbentuk dilakukan seefisien mungkin untuk mencegah protein yang terbawa dalam air dadih (EMDI & BAPEDAL, 1994). Perombakan (degradasi) limbah cair organik akan menghasilkan gas metana, karbondioksida dan gas-gas lain serta air. Perombakan tersebut dapat berlangsung secara aerobik maupun anaerobik. Pada proses aerobik limbah cair kontak dengan udara, sebaliknya pada kondisi anaerobik limbah cair tidak kontak dengan udara luar (Sugiharto, 1987). Biasanya biogas dibuat dari limbah peternakan yaitu kotoran hewan ternak maupun sisa makanan ternak, namun pada prinsipnya biogas dapat juga dibuat dari limbah cair. Biogas sebenarnya adalah gas metana (CH4). Gas metana bersifat tidak berbau, tidak berwarna dan sangat mudah terbakar. Pada umumnya di alam tidak berbentuk sebagai gas murni namun campuran gas lain yaitu metana sebesar 65%, karbondioksida 30%, hidrogen disulfida sebanyak 1% dan gas-gas lain dalam jumlah yang sangat kecil. Biogas sebanyak 1000 ft3 (28,32 m3) mempunyai nilai pembakaran yang sama dengan 6,4 galon (1 US gallon = 3,785 liter) butana atau 5,2 gallon gasolin (bensin) atau 4,6 galon minyak diesel. Untuk memasak pada rumah tangga dengan 4-5 anggota keluarga cukup 150 ft3 per hari.




2. Industri tekstil.
Limbah tekstil merupakan limbah yang dihasilkan dalam proses pengkanjian, proses penghilangan kanji, penggelantangan, pemasakan, merserisasi, pewarnaan, pencetakan dan proses penyempurnaan. Proses penyempurnaan kapas menghasil kan limbah yang lebih banyak dan lebih kuat dari pada limbah dari proses penyempurnaan bahan sistesis.
Gabungan air limbah pabrik tekstil di Indonesia rata-rata mengandung 750 mg/l padatan tersuspensi dan 500 mg/l BOD. Perbandingan COD : BOD adalah dalam kisaran 1,5 : 1 sampai 3 : 1. Pabrik serat alam menghasilkan beban yang lebih besar. Beban tiap ton produk lebih besar untuk operasi kecil dibandingkan dengan operasi modern yang besar, berkisar dari 25 kg BOD/ton produk sampai 100 kg BOD/ton. Informasi tentang banyaknya limbah produksi kecil batik tradisional belum ditemukan. Serat buatan dan serat alam (kapas) diubah menjadi barang jadi tekstil dengan menggunakan serangkaian proses. Serat kapas dibersihkan sebelum disatukan menjadi benang. Pemintalan mengubah serat menjadi benang. Sebelum proses penenunan atau perajutan, benang buatan maupun kapas dikanji agar serat menjadi kuat dan kaku. Zat kanji yang lazim digunakan adalah pati, perekat gelatin, getah, polivinil alkohol (PVA) dan karboksimetil selulosa (CMC). Penenunan, perajutan, pengikatan dan laminasi merupakan proses kering. Sesudah penenunan serat dihilangkan kanjinya dengan asam (untuk pati) atau hanya air (untuk PVA atau CMC). Penghilangan kanji pada kapas dapat memakai enzim. Sering pada waktu yang sama dengan pengkanjian, digunakan pengikisan (pemasakan) dengan larutan alkali panas untuk menghilangkan kotoran dari kain kapas. Kapas juga dapat dimerserisasi dengan perendaman dalam natrium hidroksida, dilanjutkan pembilasan dengan air atau asam untuk meningkatkan kekuatannya. Penggelantangan dengan natrium hipoklorit, peroksida atau asam perasetat dan asam borat akan memutihkan kain yang dipersiapkan untuk pewarnaan. Kapas memerlukan pengelantangan yang lebih ekstensif daripada kain buatan (seperti pendidihan dengan soda abu dan peroksida). Pewarnaan serat, benang dan kain dapat dilakukan dalam tong atau dengan memakai proses kontinyu, tetapi kebanyakan pewarnaan tekstil sesudah ditenun. Di Indonesia denim biru (kapas) dicat dengan zat warna. Kain dibilas diantara kegiatan pemberian warna. Pencetakan memberikan warna dengan pola tertentu pada kain diatas rol atau kasa.




IV. Pengolahan dan penanganan limbah cair.
Berbagai teknik pengolahan air buangan untuk menyisihkan bahan polutannya telah dicoba dan dikembangkan selama ini. Teknik-teknik pengolahan air buangan yang telah dikembangkan tersebut secara umum terbagi menjadi 3 metode pengolahan:
1. Pengolahan secara fisika
2. Pengolahan secara kimia
3. Pengolahan secara biologi
Untuk suatu jenis air buangan tertentu, ketiga metode pengolahan tersebut dapat diaplikasikan secara sendiri-sendiri atau secara kombinasi.

Pengolahan Secara Fisika
Pada umumnya, sebelum dilakukan pengolahan lanjutan terhadap air buangan, diinginkan agar bahan-bahan tersuspensi berukuran besar dan yang mudah mengendap atau bahan-bahan yang terapung disisihkan terlebih dahulu. Penyaringan (screening) merupakan cara yang efisien dan murah untuk menyisihkan bahan tersuspensi yang berukuran besar. Bahan tersuspensi yang mudah mengendap dapat disisihkan secara mudah dengan proses pengendapan. Parameter desain yang utama untuk proses pengendapan ini adalah kecepatan mengendap partikel dan waktu detensi hidrolis di dalam bak pengendap.
Proses flotasi banyak digunakan untuk menyisihkan bahan-bahan yang mengapung seperti minyak dan lemak agar tidak mengganggu proses pengolahan berikutnya. Flotasi juga dapat digunakan sebagai cara penyisihan bahan-bahan tersuspensi (clarification) atau pemekatan lumpur endapan (sludge thickening) dengan memberikan aliran udara ke atas (air flotation). Proses filtrasi di dalam pengolahan air buangan, biasanya dilakukan untuk mendahului proses adsorbsi atau proses reverse osmosis-nya, akan dilaksanakan untuk menyisihkan sebanyak mungkin partikel tersuspensi dari dalam air agar tidak mengganggu proses adsorbsi atau menyumbat membran yang dipergunakan dalam proses osmosa. Proses adsorbsi, biasanya dengan karbon aktif, dilakukan untuk menyisihkan senyawa aromatik (misalnya: fenol) dan senyawa organik terlarut lainnya, terutama jika diinginkan untuk menggunakan kembali air buangan tersebut. Teknologi membran (reverse osmosis) biasanya diaplikasikan untuk unit-unit pengolahan kecil, terutama jika pengolahan ditujukan untuk menggunakan kembali air yang diolah. Biaya instalasi dan operasinya sangat mahal.

Pengolahan Secara Kimia
Pengolahan air buangan secara kimia biasanya dilakukan untuk menghilangkan partikel-partikel yang tidak mudah mengendap (koloid), logam-logam berat, senyawa fosfor, dan zat organik beracun; dengan membubuhkan bahan kimia tertentu yang diperlukan. Penyisihan bahan-bahan tersebut pada prinsipnya berlangsung melalui perubahan sifat bahan-bahan tersebut, yaitu dari tak dapat diendapkan menjadi mudah diendapkan (flokulasi-koagulasi), baik dengan atau tanpa reaksi oksidasi-reduksi, dan juga berlangsung sebagai hasil reaksi oksidasi.
Pengendapan bahan tersuspensi yang tak mudah larut dilakukan dengan membubuhkan elektrolit yang mempunyai muatan yang berlawanan dengan muatan koloidnya agar terjadi netralisasi muatan koloid tersebut, sehingga akhirnya dapat diendapkan. Penyisihan logam berat dan senyawa fosfor dilakukan dengan membubuhkan larutan alkali (air kapur misalnya) sehingga terbentuk endapan hidroksida logam-logam tersebut atau endapan hidroksiapatit. Endapan logam tersebut akan lebih stabil jika pH air > 10,5 dan untuk hidroksiapatit pada pH > 9,5. Khusus untuk krom heksavalen, sebelum diendapkan sebagai krom hidroksida [Cr(OH)3], terlebih dahulu direduksi menjadi krom trivalent dengan membubuhkan reduktor (FeSO4, SO2, atau Na2S2O5).

Penyisihan bahan-bahan organik beracun seperti fenol dan sianida pada konsentrasi rendah dapat dilakukan dengan mengoksidasinya dengan klor (Cl2), kalsium permanganat, aerasi, ozon hidrogen peroksida. Pada dasarnya kita dapat memperoleh efisiensi tinggi dengan pengolahan secara kimia, akan tetapi biaya pengolahan menjadi mahal karena memerlukan bahan kimia.

Pengolahan secara biologi
Semua air buangan yang biodegradable dapat diolah secara biologi. Sebagai pengolahan sekunder, pengolahan secara biologi dipandang sebagai pengolahan yang paling murah dan efisien. Dalam beberapa dasawarsa telah berkembang berbagai metode pengolahan biologi dengan segala modifikasinya.
Pada dasarnya, reaktor pengolahan secara biologi dapat dibedakan atas dua jenis, yaitu:
1. Reaktor pertumbuhan tersuspensi (suspended growth reaktor);
2. Reaktor pertumbuhan lekat (attached growth reaktor).
Di dalam reaktor pertumbuhan tersuspensi, mikroorganisme tumbuh dan berkembang dalam keadaan tersuspensi. Proses lumpur aktif yang banyak dikenal berlangsung dalam reaktor jenis ini. Proses lumpur aktif terus berkembang dengan berbagai modifikasinya, antara lain: oxidation ditch dan kontak-stabilisasi. Dibandingkan dengan proses lumpur aktif konvensional, oxidation ditch mempunyai beberapa kelebihan, yaitu efisiensi penurunan BOD dapat mencapai 85%-90% (dibandingkan 80%-85%) dan lumpur yang dihasilkan lebih sedikit. Selain efisiensi yang lebih tinggi (90%-95%), kontak stabilisasi mempunyai kelebihan yang lain, yaitu waktu detensi hidrolis total lebih pendek (4-6 jam). Proses kontak-stabilisasi dapat pula menyisihkan BOD tersuspensi melalui proses absorbsi di dalam tangki kontak sehingga tidak diperlukan penyisihan BOD tersuspensi dengan pengolahan pendahuluan.
Kolam oksidasi dan lagoon, baik yang diaerasi maupun yang tidak, juga termasuk dalam jenis reaktor pertumbuhan tersuspensi. Untuk iklim tropis seperti Indonesia, waktu detensi hidrolis selama 12-18 hari di dalam kolam oksidasi maupun dalam lagoon yang tidak diaerasi, cukup untuk mencapai kualitas efluen yang dapat memenuhi standar yang ditetapkan. Di dalam lagoon yang diaerasi cukup dengan waktu detensi 3-5 hari saja.
Di dalam reaktor pertumbuhan lekat, mikroorganisme tumbuh di atas media pendukung dengan membentuk lapisan film untuk melekatkan dirinya. Berbagai modifikasi telah banyak dikembangkan selama ini, antara lain:
1. trickling filter
2. cakram biologi
3. filter terendam
4. reaktor fludisasi
Seluruh modifikasi ini dapat menghasilkan efisiensi penurunan BOD sekitar 80%-90%. Ditinjau dari segi lingkungan dimana berlangsung proses penguraian secara biologi, proses ini dapat dibedakan menjadi dua jenis:
1. Proses aerob, yang berlangsung dengan hadirnya oksigen;
2. Proses anaerob, yang berlangsung tanpa adanya oksigen.
Apabila BOD air buangan tidak melebihi 400 mg/l, proses aerob masih dapat dianggap lebih ekonomis dari anaerob. Pada BOD lebih tinggi dari 4000 mg/l, proses anaerob menjadi lebih ekonomis.

Friday, September 17, 2010

Kompetisi Rancang Bangun 2010


Teknik sipil merupakan suatu ilmu yang mencakup banyak hal meliputi pembuatan gedung, jalan, bandara, bendungan, penanganan sampah dll. Dalam suatu kegiatan atau mengimplementasikan suatu penerapan dan pelaksanaan pada bidang teknik sipil banyak terdapat masalah-masalah yang terjadi di lapangan (sekitar kita). Perkembangan populasi manusia dan lingkungan yang semakin buruk menambah problematika yang ada khususnya dalam bidang teknik sipil.

Berbagai permasalahan yang terjadi dapat mendorong untuk mencari solusi kreatif untuk pemecahannya. Minimnya suatu solusi kreatif yang tidak seimbang dengan masalah yang terjadi di sekitar kita dalam bidang teknik sipil. Dewasa ini kaum intelektual bersikap pasif mengikuti metode yang terdahulu tanpa membuat suatu ide-ide baru sehingga masalah-masalah yang terjadi terdahulu tidak terdapat pemecahannya.

Oleh karena itu, kami dari Himpunan Mahasiswa Teknik Sipil Fakultas Teknik Universitas Udayana membuat sebuah kompetisi “Rancang Bangun 2010” dengan tema “Solusi Kreatif dalam Mengatasi Masalah Ketekniksipilan di Sekitar Kita”, yang melibatkan kalangan mahasiswa seluruh Indonesia. Kompetisi ini juga dilaksanakan dalam rangka merealisasikan Program Kerja Himpunan Mahasiswa Sipil Fakultas Teknik Universitas Udayana yang akan dilaksanakan pada tanggal 22 - 23 Oktober 2010 di kampus Teknik Sipil Fakultas Teknik Universitas Udayana Bukit Jimbaran.

Kompetisi ini diharapkan dapat menciptakan solusi-solusi kreatif dari talenta-talenta muda dimana selanjutnya dapat diterapkan untuk menanggulangi permasalahan ketekniksipilan yang ada. Kompetisi ini juga diharapkan akan menjadi salah satu contoh usaha yang dilakukan mahasiswa dalam mengatasi permasalahan ketekniksipilan.

Untuk informasi lebih lengkap dapat mengunjungi website resmi Kompetisi Rancang Bangun 2010 http://www.krb-unud.co.cc

Perbedaan Glesyer dengan Geyser


Pengertian Gletser
Gletser atau glasier atau glesyer adalah sebuah bongkahan es yang besar yang terbentuk di atas permukaan tanah yang merupakan akumulasi endapan salju yang membatu selama kurun waktu yang lama. Bongkahan es ini dapat berupa wilayah daratan yang sangat luas. Saat ini, es abadi menutupi sekitar 10% daratan yang ada di bumi. Sebagian besar bongkahan es yang besar ini berada atau terdapat di wilayah kutub, baik terdapat di wilyah kutub utara, maupun terdapat di wilayah kutub selatan. Meskipun banyak orang yang mengira gletser selalu ada di daerah kutub, sesungguhnya mereka juga bisa berada di daerah pegunungan tinggi di seluruh benua, kecuali Australia, bahkan juga terdapat di pegunungan tinggi di daerah dekat khatulistiwa. Pegunungan Jayawijaya yang terdapat di Provinsi Papua Barat, di Kepulauan Negara Indonesia, merupakan salah satu contoh pegunungan tinggi yang memiliki banyak gletser dan terdapat di wilayah garis khatulistiwa yang terkenal lebih memiliki iklim yang bersifat lebih tropis.
Gletser terjadi di mulai pada lereng pergunungan yang berbentuk cekungan yang di sebut dengan sirka (cirque). Gletser terbentuk ketika salju segar turun, setelah mengendap udara yang terperangkap di antara serpihan salju terdorong keluar sehingga terjadi keping salju padat yang di sebut dengan firn. Saat salju semakin banyak turun di puncak pegunungan, firn akan terpadatkan menjadi es gletser. Bebatuan (till) yang jatuh dari puncak gunung pun akan ikut terbawa oleh gletser ini. Di daerah yang curam es terpecah menjadi rekahan-rekahan yang berbentuk baji (crevasse). Di ujungnya gletser mencair dan membentuk aliran sungai yang mengalir ke bawah pegunungan. Karena gletser berisi dari berbagai macam zat seperti bebatuan, salju, dan sedimen, sehingga saat gletser meluncur ke bawah akan merubah kontur dari pegunungan.






Gletser-gletser ini akan terus ada sepanjang musim. Ini sangat tergantung akan keseimbangan temperatur yang terdapat di wilayah di mana gletser-gletser tersebut berada, khususnya di wilayah kutub, baik di kutub utara maupun di kutub selatan. Para ilmuan memperkirakan bahwa selama pemanasan global, daerah bagian Utara dari belahan Bumi Utara (Northern Hemisphere) akan memanas lebih dari daerah-daerah lain di Bumi. Akibatnya, gunung-gunung es akan mencair dan daratan akan mengecil. Akan lebih sedikit es yang terapung di perairan Utara tersebut. Pengaruh pemanasan global atau sering disebut juga dengan istilah global warming dapat menyebabkan bongkahan es yang besar ini mengalami proses pencairan. Proses pencairan ini tidak akan berlangsung secara seketika, namun berlangsung secara gradually atau secara pelan-pelan dan berlangsung secara terus-menerus. Jika hal ini sampai terjadi, proses pencairan bongkahan es yang besar ini dapat menyebabkan peninggian muka air laut yang efek terbesarnya tentu saja dapat menenggelamkan beberapa kota atau beberapa daerah di permukaan bumi yang secara fakta memiliki ketinggian permukaan yang rendah, bahkan memiliki ketinggian di bawah muka air laut, contohnyaa seperti kota Amsterdam di Negara Belanda yang di mana kota tersebut memiliki ketinggian permukaan di bawah ketinggian permukaan air laut yang berada di sekeliling kota tersebut.


Pengertian Geyser



Geyser adalah sejenis mata air panas yang menyembur secara periodik mengeluarkan air panas dan uap air ke udara atau dapat disebut juga aliran air hangat yang menyembur ke permukaan tanah. Nama geyser berasal dari kata Geyser di Haukadalur, Islandia. Kata itu kemudian menjadi kata kerja bahasa Islandia gjósa, "menyembur".
Pembentukan geyser bergantung kepada keadaan hidrogeologi tertentu yang hanya terdapat di beberapa tempat di Bumi, dan karena itu geyser adalah fenomena yang jarang ditemui. Sekitar 1000 ada di seluruh dunia, sekitar setengahnya di Yellowstone National Park, Amerika Serikat. Aktivitas semburan geyser dapat berhenti karena pengendapan mineral di dalam geyser, gempa bumi, dan campur tangan manusia.
Penyemburan nitrogen cair telah diamati di bulan planet Neptunus, Triton. Selain itu di kutub selatan planet Mars yang ditutupi es, terdapat kemungkinan sembuaran karbon dioksida. Fenomena ini juga sering disebut geyser, namun bukan disebabkan oleh energi geothermal, melainkan pemanasan oleh matahari dan efek rumah kaca. Di Triton, nitrogen dapat menyembur dengan ketinggian 8 km.
Salah satu tempat di Reykjavik, ibukota Islandia, terkenal dengan geysernya yang mencapai diameter 20 meter dan ketika hujan, kita bisa menemukan pemandangan yang menakjubkan, yaitu aliran air yang menyembur luar biasa sehingga mencapai ketinggian 70 meter. Jika anda mengunjungi Cina dan menunggu di sekitaran geyser di sungai Yangbo, Tibet. Geyser yang ada dapat menyembur dengan suara yang mengejutkan setiap beberapa menit sekali. Diameter semburan air panas ini mencapai 2 meter dan ketinggian semburannya dapat mencapai 20 meter.
Aliran geyser berasal dari perut bumi melalui saluran-saluran geothermal dan menuju keluar ke permukaan bumi. Banyak terdapat saluran-saluran geyser di dalam perut bumi. Saluran ini muaranya terdapat di permukaan bumi atau terdapat pada permukaan tanah. Selama perjalanan di dalam saluran-saluran geyser yang terdapat pada perut bumi, aliran-aliran air hangat ini turut serta membawa mineral-mineral yang terdapat pada permukaan saluran-saluran geyser atau dengan kata lain bahwa aliran air hangat ini akan mengeluarkan atau membawa keluar berbagai jenis atau berbagai macam mineral yang tersedimentasi selama jangka waktu atau kurun waktu yang sangat lama di atau pada perut bumi. Untuk mengeluarkan aliran air hangat ini dari perut bumi menuju ke permukaan bumi atau dengan kata lain menuju ke permukaan tanah, tentu saja diperlukan tekanan yang sangat besar. Tekanan besar yang dilalui oleh aliran air hangat pada saluran-saluran geothermal ini menyebabkan semburan besar ketika aliran air hangat ini muncul ke permukaan bumi. Tekanan yang besar ini dapat menyebabkan semburan setinggi 20 meter, bahkan dapat mencapai ketinggian 100 meter yang terdapat di geyser-geyser yang terletak di Taman Nasional Yellowstone di Negara Amerika Serikat. Geyser banyak dipergunakan sebagai tempat wisata, tempat penelitian tentang keadaan geothermal, dan tempat untuk mendapatkan sumber mata air baru. Negara Selandia Baru merupakan contoh Negara yang memanfaatkan sumber-sumber geyser yang dimiliki untuk kepentingaan pariwisata. Geyser-geyser yang berada di Taman Nasional Yellowstone banyak dipergunakan untuk penelitian-penelitian tentang keadaan geothermal suatu tempat. Ada pula penelitian-penelitian yang membuat suatu kesimpulan apakah sumber-sumber geyser yang terdapat di Taman Nasional Yellowstone dapat dipergunakan sebagai sumber pembangkit listrik. Banyak wilayah yang memanfaatkan sumber-sumber geyser sebagai salah satu sumber untuk mencari sumber air bersih. Tentu saja diperlukan pengembangan teknologi untuk mendukung hal tersebut.